No matter how much time they want to spend around their children, most parents need to work and provide for their families and that means being away from home for a good part of the day. This is when babysitters step in. Having them in their children’s lives can be a lifesaver.
Of course, it is important that the person the parents trust their child to is a responsible individual who’d take great care of the little one.
A mother named Nicky Maher from Somerset, Massachusetts, decided to secretly film her daughter’s babysitter and now the video is going viral for all the good reasons.

18-year-old Delaney Wilson, who takes care of Maher’s child while she’s at work, is a talented young lady with an enchanting voice. The thing is that she’s too shy to let the world learn of her vocal abilities as she doesn’t believe she sounds that good.
One day, as Maher entered the place and heard the captivating melody of Disney’s song Part of your World from The Little Mermaid, she just knew she needed to put that beautiful moment on tape.
At the start of the recording, Maher could be heard whispering, “this is our babysitter.” As Maher quietly enters the room, Wilson, who is not aware she’s being filmed, lets her voice loose. Her singing becomes more powerful and more profound and Maher can’t hold back her emotions.
Mom secretly records babysitter’s voice while she thinks she’s alone with little girl
YOU MAY LIKE
Chuyện tình chú-cháu “ồn ào” nhất showbiz khiến khán giả khó chịu
577

Phương Thanh: Bạn trai cho tôi 7 cây vàng mua nhà trả góp
646

Phương Oanh bị mắng ‘cướp chồng’, Shark Bình đáp thẳng tay
884
No matter how much time they want to spend around their children, most parents need to work and provide for their families and that means being away from home for a good part of the day. This is when babysitters step in. Having them in their children’s lives can be a lifesaver.
Of course, it is important that the person the parents trust their child to is a responsible individual who’d take great care of the little one.
A mother named Nicky Maher from Somerset, Massachusetts, decided to secretly film her daughter’s babysitter and now the video is going viral for all the good reasons.

18-year-old Delaney Wilson, who takes care of Maher’s child while she’s at work, is a talented young lady with an enchanting voice. The thing is that she’s too shy to let the world learn of her vocal abilities as she doesn’t believe she sounds that good.
One day, as Maher entered the place and heard the captivating melody of Disney’s song Part of your World from The Little Mermaid, she just knew she needed to put that beautiful moment on tape.
At the start of the recording, Maher could be heard whispering, “this is our babysitter.” As Maher quietly enters the room, Wilson, who is not aware she’s being filmed, lets her voice loose. Her singing becomes more powerful and more profound and Maher can’t hold back her emotions.
YOU MAY LIKE
Chuyện tình chú-cháu “ồn ào” nhất showbiz khiến khán giả khó chịu
296

Phương Thanh: Bạn trai cho tôi 7 cây vàng mua nhà trả góp
136

Phương Oanh bị mắng ‘cướp chồng’, Shark Bình đáp thẳng tay
111

Speaking to Fox News, Maher explained that she had already been aware of the babysitter’s voice before she filmed her. “I was like, I want her to hear herself when she knows nobody’s watching. I was blown away to tears, cried the first time I heard her sing. So, I said Delaney, you have such an insane gift.” Maher wanted to know why Wilson didn’t sing as often and in front of other people. “That’s when she said to me, ‘I just overthink it and I never feel like I sound good enough and I just don’t always feel confident in the way I look,’” Maher explained. “And it just broke my heart.”
Maher asked Wilson if she had a permission to post the video on TikTok, and Wilson agreed. In no time, it vent viral and gathered the attention of a huge number of people.’
“It’s not that she didn’t know she had a talent that so many people have already told her she had,” Maher said. “It’s that she didn’t hear it without knowing she was trying or that someone was watching. So that’s why the video was so beautiful.”
It is so beautiful when you are the reason for someone’s talent to shine.
Synaptic Information Storage Capacity Measured With Information Theory
Ever wondered just how much data your brain can hold? We often compare the brain to a supercomputer, but what if that comparison isn’t just a metaphor—it’s literal? Deep within your brain, at the junctions where neurons meet, lies an extraordinary form of biological storage: the synapse. And thanks to breakthroughs in information theory, we’re beginning to quantify its staggering capacity.
In this article, we’ll dive into how synaptic storage works, how scientists measure it, and why this knowledge could shape the future of data storage—from artificial intelligence to DNA-based memory.
What Are Synapses and Why Are They Important?

Think of neurons as the brain’s messengers. But without synapses—the gaps between them where signals are transmitted—those messages would go nowhere. A synapse is where the magic happens: it’s the space where one neuron sends a chemical or electrical signal to another, sparking thoughts, memories, movements, and more.
Now here’s the kicker: each of these tiny junctions doesn’t just pass along data—it stores it.
Your brain has about 86 billion neurons, and each one can form around 1,000 synapses. That’s a total of roughly 125 trillion synapses buzzing away in your brain, constantly sending and receiving signals. These connections form the foundation of your memories, knowledge, and perception.
Measuring Synaptic Storage with Information Theory
To understand how synapses store information, scientists turn to information theory—a branch of mathematics that deals with encoding, decoding, and compressing data. Think of it like analyzing how much a hard drive can hold, but on a biological scale.
Video : 2-Minute Neuroscience: Synaptic Transmission
Each synapse, as it turns out, can store up to 4.7 bits of information. That might not sound like much until you consider the scale:
- 1 bit is a single piece of binary data (a 0 or 1)
- 4.7 bits per synapse × 125 trillion synapses = over 500 trillion bits of potential storage
Translated into digital terms, your brain can theoretically store more data than the entire internet—all in a compact, low-energy package powered by biology.
The Brain’s Efficiency: Powering Trillions of Connections
Here’s something even more mind-blowing: while your laptop heats up and guzzles electricity, your brain handles all of this complex storage and processing using roughly 20 watts of power—that’s about the same as a dim light bulb.
This insane efficiency is what’s inspiring researchers to build neural networks and deep learning systems that mimic the brain. If computers could process and store data like synapses do, we’d have faster, smarter, and greener technology.
Artificial Intelligence and Synaptic Models
The field of AI, especially machine learning and deep learning, borrows heavily from how the brain processes and stores information. Artificial neural networks use layers of interconnected nodes (inspired by neurons) to simulate learning.
But here’s where it gets interesting: researchers are now using real data about synaptic information capacity to refine these systems. The goal? To build AI models that are more human-like, not just in intelligence but in efficiency and adaptability.
Imagine a future where your smartphone thinks and stores information with the same elegance as your brain. That future isn’t science fiction—it’s science.
Beyond the Brain: DNA as the Ultimate Storage Device
While the brain remains the pinnacle of biological storage, it’s not the only game in town. Enter DNA, nature’s original information vault.
DNA doesn’t just code for life—it can be used to store digital data. And we’re not talking small files here. A single gram of DNA can hold up to 215 petabytes of data. That’s 215 million gigabytes—enough to store every photo, song, and document you’ve ever owned, plus millions more.
In fact, researchers have already done it. In one groundbreaking study, scientists encoded a 52,000-word book into synthetic DNA. They converted the digital content into binary (0s and 1s), then translated those digits into DNA’s four-letter alphabet: A, T, G, and C. The result? A physical strand of DNA holding a complete, retrievable digital file.
Why DNA Storage Matters for the Future
Traditional storage devices—hard drives, SSDs, even cloud servers—have physical limits. They degrade over time and take up massive amounts of space. DNA, on the other hand, is incredibly compact, durable, and stable for thousands of years if stored properly.
If scaled correctly, DNA storage could revolutionize how we preserve knowledge. Imagine backing up the entire contents of the Library of Congress on something no bigger than a sugar cube. That’s the level we’re talking about.
Video : How Your Brain Remembers: Neurons & Synapses Explained!
Bridging Biology and Technology
What’s exciting is how these two areas—brain synapses and DNA storage—are starting to intersect. Both are nature’s proof that small-scale systems can handle mind-blowing amounts of data. As scientists continue to decode these systems using information theory, they’re finding ways to integrate them into technology.
It’s not about replacing computers with brains or turning DNA into a USB drive. It’s about learning from nature’s most efficient designs to build the next generation of computing and storage systems.
Conclusion: Reimagining Storage in a Biological World
Your brain’s 125 trillion synapses silently store and process more information than entire server farms, all while sipping on 20 watts of energy. Meanwhile, DNA—the code of life—is showing us how to pack massive libraries of data into microscopic strands.
By measuring synaptic storage capacity with information theory, we’re not just understanding the brain better—we’re laying the foundation for a new era of intelligent, efficient technology.
The takeaway? Nature has already solved problems we’re only beginning to understand. And the more we study it, the closer we get to unlocking the true potential of both our minds and our machines.
Leave a Reply